A-Z Navigation
Begriff Erklärung
Abgeschlossenes System

Ein System aus Massen $m_i$, bei dem nur innere Wechselwirkungen, aber keine äußeren Kräfte auftreten, heißt abgeschlossen. Der Gesamtimpuls und Gesamtdrehimpuls eines abgeschlossenen Systems bleibt erhalten. (Impuls- bzw. Drehimpuls-Erhaltungssatz).

Auftriebskraft

Jeder Körper der Masse $m$ in einer Flüssigkeit erfährt eine Auftriebskraft $\boldsymbol{F}_{\text{A}}$ die entgegengesetzt gleich zur Gewichtskraft $\boldsymbol{F}_{\text{G}}$ des vom Körper verdrängten Flüssigkeitsvolumens ist. Ist $|\boldsymbol{F}_{\text{A}}|> m\cdot g$, so schwimmt der Körper, ist $F_{\text{A}}=mg$, so schwebt er in der Flüssigkeit.

Bernoulli-Gleichung

Für reibungsfreie inkompressible strömende Medien beschreibt die Bernoulli-Gleichung $p+\tfrac{1}{2}\rho u^{2}=\mathrm{const}$ den Energiesatz: $E_{\text{p}}+E_{\text{kin}}=E=\mathrm{const}$. Der Druck $p$ sinkt mit wachsender Strömungsgeschwindigkeit $u$.

Bewegung eines freien starren Körpers

Die Bewegung eines freien starren Körpers lässt sich immer zusammensetzen aus der Translation seines Schwerpunktes mit der Geschwindigkeit $\boldsymbol{v}_{\text{S}}$ und der Rotation des Körpers um diesen Schwerpunkt mit der Winkelgeschwindigkeit $\boldsymbol{\omega}$. Der Körper hat daher sechs Freiheitsgrade der Bewegung.

Diffusion

Treten Konzentrationsgradienten in einem Gas auf, so beobachtet man Diffusionsprozesse, die diese Gradienten verringern. Die mittlere Diffusions-Teilchenstromdichte $\boldsymbol{j}=-D\mathop{\mathbf{grad}}n$ ist proportional zum Dichtegradienten. Die Diffusionskonstante $D$ hängt ab von der Art der Gasmoleküle. Diffusion führt zu einem Massetransport von Orten größerer zu solchen kleinerer Teilchendichte $n$.

Drehimpuls und Drehmoment

Der Drehimpuls eines Massenpunktes $m$, bezogen auf den Nullpunkt des Koordinatensystems, ist $\boldsymbol{L}=(\boldsymbol{r}\times m\cdot\boldsymbol{v})=\boldsymbol{r}\times\boldsymbol{p}$. Das auf den Körper im Kraftfeld $\boldsymbol{F}(\boldsymbol{r})$ wirkende Drehmoment ist $\boldsymbol{D}=\boldsymbol{r}\times\boldsymbol{F}$. Es gilt: $\boldsymbol{D}=\frac{\mathrm{d}\boldsymbol{L}}{\mathrm{d}t}$.

Dritter Hauptsatz der Thermodynamik

Die Entropie $S$ geht für $T\to 0$ gegen Null.

Drittes Newtonsches Axiom

Für zwei Körper, die nur miteinander, aber nicht mit anderen Körpern wechselwirken, gilt das 3. Newtonsche Axiom: actio = reactio: $\boldsymbol{F}_{1}=-\boldsymbol{F}_{2}$, wenn $\boldsymbol{F}_{1}$ die Kraft, die auf den 1. Körper, $\boldsymbol{F}_{2}$ die Kraft, die auf den 2. Körper wirkt, bedeutet.

Elastischer Stoß

Bei elastischen Stößen zwischen zwei Teilchen bleiben Gesamtimpuls und kinetische Gesamtenergie der Stoßpartner erhalten.

Entropie

Die Entropie $S=k\ln W$ ist ein Maß für den Ordnungszustand eines Systems. Sie hängt ab von der Zahl $W$ der Realisierungsmöglichkeiten des Systems bei vorgesehener Temperatur und Gesamtenergie.

Erster Hauptsatz der Thermodynamik

Der 1. Hauptsatz der Thermodynamik $\Delta U=\Delta Q+\Delta W$ ist ein Energieerhaltungssatz: Die Zunahme $\Delta
U$ der inneren Energie $U=N\cdot(f/2)kT$ eines idealen Gases mit $N$ Teilchen ist gleich der Summe aus zugeführter Wärmeenergie $\Delta Q$ und am System geleisteter Arbeit
$\Delta W$.

Erstes Newtonsches Axiom

Jeder Körper verharrt im Zustand der Ruhe oder der gleichförmigen geradlinigen Bewegung, solange keine Kraft auf ihn wirkt.

Erzwungene Schwingung

Bei einer erzwungenen Schwingung wird dem schwingenden System von außen periodisch Energie zugeführt. Nach einem Einschwingvorgang stellt sich eine stationäre Schwingung mit der Erregerfrequenz ein, bei der die Verluste des Systems gerade von außen gedeckt werden. Im Resonanzfall (Erregerfrequenz = Eigenfrequenz des Systems) kann die Amplitude sehr groß werden (Resonanzkatastrophe).

Gedämpfter Oszillator

Bei einem gedämpften Oszillator wird Schwingungsenergie in andere Energieformen (z. B. Reibungswärme) umgewandelt. Bei geringer Dämpfung nimmt die Schwingungsamplitude exponentiell ab. Bei starker Dämpfung kann sich keine Schwingung mehr ausbilden.

Harmonische Schwingung

Der freie ungedämpfte eindimensionale Oszillator führt eine harmonische Schwingung $x=A\cdot\cos(\omega t+\varphi)$ aus, die durch
Amplitude $A$, Kreisfrequenz $\omega$ und Phasenverschiebung $\varphi$ vollständig beschrieben wird. Die Summe aus kinetischer und potentieller Energie bleibt zeitlich konstant.

Hauptträgheitsmomente

Das Trägheitsmoment $I_{\text{S}}$ hängt ab von der Richtung der Drehachse im Körper. Man kann es als Tensor schreiben. Die Richtungen der Achsen mit größtem und kleinstem Trägheitsmoment bestimmen das Hauptachsensystem. In ihm wird der Trägheitsmomenttensor diagonal. Die Diagonalelemente sind die Hauptträgheitsmomente.

Hookesches Gesetz

Für eine relative Längenänderung $\varepsilon=\Delta L/L$ eines Körpers der Länge $L$ mit Querschnitt $A$ und Elastizitätsmodul $E$ braucht man die Zugspannung $\sigma=E\cdot\varepsilon$.

Huygenssches Prinzip

Das Huygenssche Prinzip sagt aus, dass jeder Raumpunkt einer Wellenfront Ausgangspunkt einer Kugelwelle ist. Aus diesem Prinzip lassen sich Reflexion, Brechung und Beugung von Wellen herleiten.

Inelastischer Stoß

Bei inelastischen Stößen wird ein Teil der kinetischen Energie in innere Energie (z. B. potentielle Energie) der Stoßpartner umgewandelt. Der Gesamtimpuls bleibt jedoch auch hier erhalten.

Inertialsystem

Zur Beschreibung von Bewegungen braucht man ein Koordinatensystem. Koordinatensysteme, in denen die drei Newtonschen Axiome gelten, heißen Inertialsysteme. Jedes Koordinatensystem, das sich mit konstanter Geschwindigkeit $\boldsymbol{v}$ gegen ein Inertialsystem bewegt, ist ebenfalls ein Inertialsystem.

Kinetische Energie

Die kinetische Energie eines Körpers der Masse $m$, der sich mit der Geschwindigkeit $\boldsymbol{v}$ bewegt, ist $E_{\text{kin}}=\frac{m}{2}v^{2}$.

Kompressibilität

Unter allseitigem Druck $p$ wird die relative Volumenänderung eines Körpers
$\Delta V/V=-\kappa\cdot p$ durch die Kompressibilität $\kappa$ gegeben. Es gilt die Relation $\kappa=3/E(1-2\mu)$ mit der Querkontraktionszahl $\mu=-(\Delta d/d)/(\Delta L/L)$.

Konservatives Kraftfeld

Kraftfelder $\boldsymbol{F}(\boldsymbol{r})$, bei denen die Arbeit $W=\int\boldsymbol{F}\mathrm{d}\boldsymbol{r}$ nur von Anfangspunkt $P_1$ und Endpunkt $P_2$ dieses Weges abhängen, aber nicht vom Verlauf des Weges zwischen $P_1$ und $P_2$, heißen konservativ. Für solche Kraftfelder gilt: $\mathop{\mathbf{rot}}\boldsymbol{F}=\boldsymbol{0}$. Beispiele sind alle Zentralkraftfelder $\boldsymbol{F}(\boldsymbol{r})=f(r)\cdot\boldsymbol{r}_{0}$.

Kontinuitätsgleichung

Die Kontinuitätsgleichung $\frac{\partial\rho}{\partial t}+\mathop{\mathrm{div}}(\rho\boldsymbol{u})=0$ drückt die Massenerhaltung bei einem strömenden Medium aus. Für inkompressible Flüssigkeiten ($\rho$ = const) wird daraus: $\mathrm{div}\boldsymbol{u} = 0$.

Lorentz-Transformation

Die Transformation von Ort, Zeit und Geschwindigkeit, und damit auch der Bewegungsgleichung eines Körpers von einem auf ein anderes Inertialsystem wird durch die Lorentz-Transformationen beschrieben. Sie gehen von der durch Experimente gesicherten Konstanz der Vakuum-Lichtgeschwindigkeit aus, die unabhängig ist vom gewählten Inertialsystem. Für kleine Geschwindigkeiten $v\ll c$ gehen sie in die klassischen Galilei-Transformationen über.

Maxwell-Boltzmann-Verteilung

Die Geschwindigkeitsverteilung $n(v)$ der Gasmoleküle im thermischen Gleichgewicht ist durch die Maxwell-Boltzmann-Verteilung $n(v)\mathrm{d}v\propto v^{2}\cdot\mathrm{e}^{-\frac{m}{2}v^{2}/kT}\mathrm{d}v$ für den Betrag $v=|\boldsymbol{v}|$ der Geschwindigkeit gegeben. Die Verteilung $n(v_i),\, i=x,y,z$ der Geschwindigkeitskomponenten ist dagegen eine zu $v_i = 0$ symmetrische Gaußverteilung.

Modell des Massenpunktes

Ein Körper der Masse $m$ lässt sich durch das idealisierte Modell des Massenpunktes beschreiben, wenn seine räumliche Ausdehnung für die Beschreibung seiner Bewegung keine Rolle spielt.

Molare Wärmekapazitäten

Die molare Wärmekapazität bei konstantem Volumen $C_{V}=R\cdot f/2$ ist gleich dem Produkt aus Gaskonstante $R=k\cdot N_{\text{A}}$ und der halben Zahl $f$ der Freiheitsgrade für die Bewegung der Atome bzw. Moleküle. Die molare Wärmekapazität idealer Gase bei konstantem Druck ist $C_{p}=C_{V}+R$.

Navier-Stokes-Gleichung

Die vollständige Bewegungsgleichung für ein strömendes Medium ist die Navier-Stokes-Gleichung $\varrho\left(\frac{\partial}{\partial t}+\boldsymbol{u}\cdot\nabla\right)\boldsymbol{u}=-\mathop{\mathbf{grad}}p+\varrho\cdot\boldsymbol{g}+\eta\Delta\boldsymbol{u}$, die für ideale Flüssigkeiten ($\eta=0$) in die Euler-Gleichung übergeht. Sie beschreibt auch turbulente Flüssigkeiten und ist im allgemeinen Fall nur numerisch lösbar.

Nutation und Präzession

Bei beliebiger Richtung von $\boldsymbol{\omega}$ nutiert die momentane Drehachse (= Rotationsachse $\boldsymbol{\omega}$) um die (ohne äußeres Drehmoment) raumfeste Drehimpulsachse. Unter der Wirkung eines äußeren Drehmomentes präzediert die Drehimpulsachse und zusätzlich nutiert die momentane Drehachse um die Drehimpulsachse. Es gilt: $\frac{\mathrm{d}\boldsymbol{L}}{\mathrm{d}t}=\boldsymbol{D}$.

Oberflächenspannung

Auf Grund der Anziehungskräfte zwischen den Flüssigkeitsmolekülen muss man Arbeit aufwenden, um die Flüssigkeitsoberfläche zu vergrößern. Die spezifische Oberflächenenergie gibt die Arbeit pro Flächenvergrößerung an. Sie ist gleich der Oberflächenspannung.

Phasengeschwindigkeit

Die Phasengeschwindigkeit $v_{\text{Ph}}=\omega/k$ hängt von den Materialeigenschaften ab. Hängt sie auch von der Wellenlänge ab, so sagt man, es liege Dispersion vor. Für Longitudinalwellen in festen Körpern ist $v_{\text{Ph}}=\sqrt{E/\varrho}$ durch Elastizitätsmodul $E$ und Dichte $\rho$ gegeben, in Gasen $v_{\text{Ph}}=\sqrt{p/\varrho}$ durch Druck $p$ und Dichte $\rho$. Für Transversalwellen in festen Körpern ist $v_{\text{Ph}}=\sqrt{G/\varrho}$ durch Schubmodul $G$ und Dichte $\rho$ bestimmt. Die Phasengeschwindigkeit von Transversalwellen an Flüssigkeitsoberflächen hängt ab von der Oberflächenspannung $\sigma$, Flüssigkeitstiefe und Wellenlänge.

Potentielle Energie

In konservativen Kraftfeldern lässt sich jedem Punkt P eine
potentielle Energie $E_{\text{p}}(P)$ zuordnen, so dass für die Arbeit $W=\smash{\int_{P_{1}}^{P_{2}}}\boldsymbol{F}\mathrm{d}\boldsymbol{r}=E_{\text{p}}(P_{1})-E_{\text{p}}(P_{2})$ gilt. Die Wahl des Nullpunktes für $E_{\text{p}}$ ist beliebig. Oft wählt man $E_{\text{p}}(r=\infty)=0$.

Reduzierte Masse

Die Relativbewegung zweier Teilchen mit den Massen $m_i$ unter dem Einfluss ihrer gegenseitigen Wechselwirkung $\boldsymbol{F}_{1}=-\boldsymbol{F}_{2}$ kann reduziert werden auf die Bewegung eines Teilchens der reduzierten Masse $\mu=\frac{m_{1}\cdot m_{2}}{m_{1}+m_{2}}$, das sich mit der Relativgeschwindigkeit $\boldsymbol{v}_{12}=\boldsymbol{v}_{1}-\boldsymbol{v}_{2}$ bewegt.

Reibungskräfte

Bei der Relativbewegung sich berührender Körper treten Reibungskräfte auf, die von der physikalischen Beschaffenheit der sich berührenden Oberflächen abhängt. Man unterscheidet zwischen Haftreibung, Gleitreibung und Rollreibung. Im Allgemeinen gilt für die entsprechenden Reibungskräfte $|F_{\text{H}}|> |F_{\text{G}}|> |F_{\text{R}}|$.

Reversible und irreversible Kreisprozesse

Reversible Prozesse sind idealisierte Prozesse, bei denen ein System ohne Wärmeverluste nach Durchlaufen eines Kreisprozesses wieder in seinen Anfangszustand zurückkehrt. Bei reversiblen Kreisprozessen bleibt die Entropie $S$ konstant. Bei allen irreversiblen Prozessen nimmt die Entropie $S$ zu und die freie Energie $F=U-T\cdot S$ ab.

Reynoldssche Zahl

Bei Strömungsgeschwindigkeiten unterhalb eines kritischen Wertes $u_{\text{c}}$ tritt laminare Strömung auf, oberhalb von $u_{\text{c}}$ turbulente Strömung. Dieser kritische Wert wird durch die Reynoldssche Zahl $\mathop{\mathrm{Re}}=2E_{\text{kin}}/W_{\text{Reibung}}$ bestimmt, die das Verhältnis von kinetischer Energie eines Volumenelementes $\Delta V=L^{3}$ zur Reibungsenergie bei der Verschiebung von $\Delta V$ um $L$ angibt.

Scherung

Eine tangential an der Seitenfläche eines Körpers angreifende Kraft $F$ bewirkt eine Scherung (Torsion) des Körpers. Für einen Quader mit Seitenfläche $d^2$ ist der Scherwinkel $\alpha$ mit der Schubspannung $\tau=F/d^{2}$ durch $\tau=G\cdot\alpha$ verknüpft. $G$ heißt Schubmodul.

Schweredruck

Im Inneren einer Flüssigkeit herrscht in gleicher Höhe überall der gleiche Druck. Infolge des Schweredrucks steigt der Druck linear mit der Flüssigkeitstiefe. In der Tiefe $h$ unterhalb der horizontalen Oberfläche einer Flüssigkeit mit der Dichte herrscht der Druck $p=p_{0}+\varrho\cdot g\cdot h$, wenn $p_{0}$ der auf die Oberfläche wirkende äußere Druck (z. B. Luftdruck) ist.

Strömungswiderstand

Der Strömungswiderstand eines Körpers in einem strömenden Medium wird durch die auf ihn wirkende Druckwiderstandskraft $F_{\text{D}}=(c_{\text{D}}\rho/2)u^{2}A$ beschrieben. Er hängt von seiner Querschnittsfläche $A$ und seinem Widerstandsbeiwert $c_{\text{D}}$ ab, der durch die geometrische Form des umströmten Körpers bestimmt wird. Er ist außerdem proportional zur kinetischen Energie pro Volumen des strömenden Mediums. In laminaren Strömungen ist $F_{\text{D}}$ wesentlich kleiner als in turbulenten Strömungen.

Trägheitskräfte

Bei der Beschreibung von Bewegungen in beschleunigten Bezugssystemen müssen zusätzliche Beschleunigungen eingeführt werden, die formal durch sogenannte Trägheitskräfte (Scheinkräfte) berücksichtigt werden. In einem mit konstanter Winkelgeschwindigkeit $\boldsymbol{\omega}$ rotierenden System sind dies: Die Corioliskraft $F_{\text{c}}=2m(\boldsymbol{v}^{\prime}\times\boldsymbol{\omega})$, die von der Geschwindigkeit $\boldsymbol{v}^{\prime}$ des Körpers der Masse $m$ relativ zum beschleunigten Koordinatensystem abhängt, und die Zentrifugalkraft $F_{\text{Zf}}=m\cdot\boldsymbol{\omega}\times(\boldsymbol{r}\times\boldsymbol{\omega})$, die unabhängig von $\boldsymbol{v}^{\prime}$ ist.

Trägheitsmoment

Das Trägheitsmoment eines Körpers bezüglich einer Rotationsachse durch den Schwerpunkt, ist durch $I_{\text{S}}=\int_{V}r^{2}_{\perp}\varrho\mathrm{d}V$ gegeben, wobei $r_{\perp}$ der senkrechte Abstand des Volumenelementes $\mathrm{d}V$ von der Rotationsachse ist. Bezüglich einer beliebigen parallelen Achse im Abstand $a$ von der Achse durch den Schwerpunkt ist es $I=I_{\text{S}}+Ma^{2}$, wobei $M$ die Gesamtmasse des Körpers ist.

Van-der-Waals-Gleichung

Bei realen Gasen kann das Eigenvolumen der Moleküle und die zwischenmolekularen Wechselwirkungen nicht mehr wie beim idealen Gas vernachlässigt werden. Die Zustandsgleichung $p\cdot V=R\cdot T$ muss deshalb erweitert werden zur van-der-Waals-Gleichung eines Mols: $(p+a/V^{2})\cdot(V-b)=R\cdot T$, wobei $a/V^{2}$ den Binnendruck und $b$ das vierfache Eigenvolumen der $N_{\text{A}}$ Moleküle angeben.

Welle

Eine Welle ist die räumliche Ausbreitung einer lokalen Störung des Gleichgewichtes. So ergibt die Ausbreitung einer harmonischen Schwingung eine periodische Sinuswelle. Die Ausbreitung einer mechanischen Welle wird durch die Kopplung schwingender Masseteilchen an Nachbarteilchen bewirkt. Bei transversalen Wellen geschieht die Schwingungsauslenkung senkrecht zur Ausbreitungsrichtung, bei longitudinalen Wellen in Ausbreitungsrichtung.

Zustandsgleichung des idealen Gases

Der Zustand eines thermodynamischen Systems wird durch seine Zustandsgrößen Druck $p$, Volumen $V$, Temperatur $T$ eindeutig bestimmt. Für $\nu$ Mole im Volumen $V$ eines idealen Gases gilt die Zustandsgleichung: $p\cdot V=\nu\cdot R\cdot T$.

Zweiter Hauptsatz der Thermodynamik

Der zweite Hauptsatz sagt aus, dass bei der Umwandlung von Wärme in mechanische Arbeit höchstens der Bruchteil $\eta=(T_{1}-T_{2})/T_{1}$ bei der Abkühlung eines Wärmereservoirs von der Temperatur $T_{1}$ auf $T_{2} < T_{1}$ umgewandelt werden kann.

Zweites Newtonsches Axiom

Die auf einen Körper wirkende Kraft $\boldsymbol{F}$ wird definiert als $\boldsymbol{F}=\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t}$.

Zurück zur Übersicht