Quantenmechanik (nicht nur) für Lehramtsstudierende

Thomas Filk

Quantenmechanik (nicht nur) für Lehramtsstudierende

Thomas Filk Physikalisches Institut Universität Freiburg Freiburg, Deutschland

ISBN 978-3-662-59735-4 ISBN 978-3-662-59736-1 (eBook) https://doi.org/10.1007/978-3-662-59736-1

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Spektrum

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Planung/Lektorat: Margit Maly

Springer Spektrum ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

Vorwort

Die Quantenmechanik bzw. allgemeiner die Quantentheorie ist nicht einfach nur ein spezieller Teil der Physik; sie scheint uns in besonderem Maße zu zwingen, ein vollkommen neues und ungewohntes Wirklichkeitsverständnis anzunehmen. Die Quantenmechanik stellt Vorstellungen infrage, die für uns so selbstverständlich sind, dass wir uns ihrer häufig nicht einmal bewusst werden, was ihre Vermittlung in der Schule oder an der Universität besonders schwierig macht.

Mehr als bei jedem anderen Teil der theoretischen Physik muss man in der Quantentheorie zwischen ihrer Anwendung und ihrem Verständnis unterscheiden. Für die experimentelle Praxis reicht es oft aus, einen gewissen Satz von Regeln und Vorschriften anzuwenden. In diesem Buch werde ich diese Vorschriften gelegentlich als "Kochrezept der Quantenmechanik" bezeichnen. Dieses Kochrezept ist für die Anwendungen, sowohl in der Forschung als auch in der Umsetzung quantentheoretischer Erkenntnisse zur Entwicklung neuer Techniken, fast immer ausreichend. Die meisten Physiker entwickeln mit der Zeit ein "Bauchgefühl" und eine gute Vorstellung, wie sich quantenmechanische Systeme verhalten, auch wenn sich bei hartnäckigem Hinterfragen diese Vorstellungen oft als inkonsistent oder widersprüchlich erweisen.

Interessierte Schüler und Schülerinnen, aber auch Studierende der Physik, Philosophie, Wissenschaftsgeschichte etc., die sich mit der Quantenmechanik auseinandersetzen möchten, werden jedoch unweigerlich danach fragen, ob bzw. inwieweit man dieses Kochrezept 'verstehen' kann und welche Vorstellungen man damit verbinden soll. Diese Ebene der Metaphysik muss den festen wissenschaftlichen Boden notwendigerweise verlassen und ist daher für manche Naturwissenschaftler nicht nur zweitrangig, sondern auch unwissenschaftlich. Als Lehrender, gleichgültig ob in der Schule oder im Hörsaal, sollte man sich solchen Fragen jedoch stellen. Was bedeutet eigentlich 'verstehen'? Inwiefern beschreibt die Physik 'die Natur'? In welchem Maße sind alle physikalischen Theorien – insbesondere auch die Quantentheorie – nur Modelle?

Dieses Lehrbuch entstand aus einer Vorlesung an der Universität Freiburg, die ich dort regelmäßig anbiete und die speziell für Lehramtsstudierende konzipiert und, soweit möglich, auf die Bedürfnisse zukünftiger Lehrer und Lehrerinnen zugeschnitten ist. Daher habe ich auch weniger Wert auf die Vermittlung von mathematischen Techniken zur Lösung spezifischer Probleme in der Quantenmechanik gelegt; stattdessen wurde den konzeptuellen Grundlagen ein größeres

VI Vorwort

Gewicht zugeschrieben. Vor diesem Hintergrund habe ich beispielsweise auf eine Vermittlung von störungstheoretischen Verfahren sowie eine eingehendere Behandlung der Streutheorie verzichtet. Diese Aspekte sind zwar für den zukünftigen Forscher von Bedeutung, sie geben jedoch kaum wesentliche Zusatzerkenntnisse über das "Wesen" der Quantenmechanik und lassen sich ohnehin im Unterricht nicht einsetzen. Trotzdem bleibt auch in der vorliegenden Darstellung der mathematische Formalismus der Quantenmechanik ein Schwerpunktthema, insbesondere da gerade hier die Frage nach einer anschaulichen Interpretation mancher mathematischer Strukturen und Ausdrücke immer noch offen und umstritten ist.

Trotzdem handelt es sich bei diesem Lehrbuch nicht um eine "abgespeckte" Version der Quantenmechanik. Manche Kapitel, insbesondere im dritten Teil des Buches, enthalten teilweise sehr ausführliche Berechnungen. Sie sind nicht notwendigerweise Teil des Lehr- und Lernstoffs, sollen aber den interessierten Lesern als vertiefende Zusatzinformation dienen.

Sehr viel Wert lege ich darauf immer wieder zu betonen, dass es eine allgemein akzeptierte Interpretation der Quantenmechanik nicht gibt. Schon die grundlegende Frage nach dem ontologischen (also von der subjektiven Erkenntnis des Beobachters unabhängigen) Status der Wellenfunktion wird von verschiedenen Physikern unterschiedlich beantwortet. Daher wird in diesem Lehrbuch einerseits versucht, die wissenschaftlichen Aussagen möglichst interpretationsneutral zu halten (was leider nicht immer gelungen sein dürfte), andererseits werde ich an geeigneten Stellen aber auch auf unterschiedliche Interpretationsmöglichkeiten eingehen, angefangen bei rein positivistischen Ansätzen über subjektive und informationstheoretische Interpretationen der Quantenmechanik bis hin zur Bohm'schen Mechanik.

Freiburg Herbst 2019 Thomas Filk

Inhaltsverzeichnis

Ten I Die Wege zur Quantentneu	Teil I	ei Wege zur Quantent	heorie
--------------------------------	--------	----------------------	--------

1	Phot	onenexperimente zur Polarisation	3			
	1.1	Was man wissen sollte	4			
	1.2	Experimente zu Polarisation von Lichtwellen	4			
		1.2.1 Licht als Welle und seine Intensität	5			
		1.2.2 Polarisation und Polarisationsstrahlteiler	7			
		1.2.3 Hintereinandergeschaltete Polarisationsfilter	9			
	1.3	Einzelne Photonen	10			
		1.3.1 Die Eigenschaften $ h\rangle$ und $ v\rangle$	12			
		1.3.2 Die Eigenschaften $ \alpha\rangle$, $ p\rangle$ und $ m\rangle$	15			
	1.4	Mathematische Beschreibung in einem Vektorraum	16			
		1.4.1 Polarisationszustände als Strahlen einer Ebene	17			
		1.4.2 Die Darstellung von Filtern durch				
		Projektionsmatrizen	18			
		1.4.3 Superpositionen	20			
		1.4.4 Quantenobjekte – Wellen oder Teilchen?	22			
	1.5	Der Begriff der "Messung" in der Quantentheorie	23			
	1.6	Zirkulare Polarisationen	26			
	1.7	Zusammenfassung	29			
2	Inter	rferenzexperimente am Doppelspalt	31			
	2.1	Der Doppelspalt für Wellen	32			
		2.1.1 Interferenzmuster bei Photonen	35			
	2.2	Materiewellen	37			
	2.3	Durch welchen Spalt tritt ein Quantenobjekt?				
	2.4	Orts- und Wellenzahlbestimmungen				
	2.5	Die Schrödinger-Gleichung				
	2.6	Zusammenfassung				
3	Die Anfänge der Quantentheorie in Experimenten					
	3.1	Das Planck'sche Strahlungsgesetz	48			
		3.1.1 Schwarze Körper	48			
		3.1.2 Herleitung der Planck'schen Formel	50			
	3.2	Der photoelektrische Effekt	53			

VIII Inhaltsverzeichnis

	3.3	Die mo	olare Wärmekapazität in Festkörpern	55
	3.4	Atoms	pektren	57
	3.5	Zeema	ın- und Stark-Effekt	58
	3.6	Die Co	ompton-Streuung	60
	3.7	Das St	ern-Gerlach Experiment	62
	3.8	Wie gi	ng es weiter?	63
Teil	пп	Die Grun	ndlagen der Quantentheorie	
4	Das 1	mathem	atische Rüstzeug	69
	4.1	Vektor	räume und physikalische Zustände	70
		4.1.1	Hilbert-Räume	70
		4.1.2	Der duale Vektorraum	74
		4.1.3	Die Bra-Ket-Notation	75
	4.2	Linear	e Abbildungen – Operatoren	76
		4.2.1	Allgemeine Eigenschaften linearer Operatoren	77
		4.2.2	Selbstadjungierte Operatoren	79
		4.2.3	Projektionsoperatoren	82
		4.2.4	Unitäre Operatoren	84
		4.2.5	Veranschaulichung der Operatoren anhand der	
			Polarisation	86
	4.3		a-Ket-Notation für Operatoren	88
	4.4	Operat	foren im \mathcal{L}_2	90
		4.4.1	Das Spektrum von x und $-i\frac{\partial}{\partial x}$	90
		4.4.2	Die x- und k-Basis.	92
		4.4.3	Der Kommutator von x und $-i\frac{\partial}{\partial x}$	93
5	Die I		e der Quantentheorie und allgemeine Folgerungen	101
	5.1		ostulate der klassischen Mechanik	103
	5.2	Die Po	ostulate der Quantentheorie	105
		5.2.1	Darstellung von Zuständen	107
		5.2.2	Darstellung von Observablen	109
		5.2.3	Messwerte und Erwartungswerte	114
		5.2.4	Reduktion des Quantenzustands	117
		5.2.5	Dynamik abgeschlossener Systeme	118
		5.2.6	Mehrteilchensysteme	121
	5.3	Unsch	ärferelationen	121
		5.3.1	Gleichzeitige Messbarkeit zweier Observabler	121
		5.3.2	Mathematische Herleitung einer Unschärferelation	124
		5.3.3	Unschärferelation bei Fourier-Transformierten	125
	5.4	-	etrien	127
	5.5		nalsätze kompatibler Observablen	129
	5.6	Gemis	chte Zustände und Dichtematrizen	130
		5.6.1	Gemischte Zustände in der klassischen Mechanik	131
		5.6.2	Dichtematrizen	131

Inhaltsverzeichnis IX

6	Kast	tenpoten	zial und harmonischer Oszillator	137		
	6.1	Die Sc	hrödinger-Gleichung für Potenzialsysteme	138		
		6.1.1	Zeitabhängige und zeitunabhängige			
			Schrödinger-Gleichung	139		
		6.1.2	Die Schrödinger-Gleichung in einer Basis	140		
	6.2	Das un	nendliche Kastenpotenzial	142		
	6.3	Das en	dliche Kastenpotenzial und der Tunneleffekt	148		
		6.3.1	Allgemeine Eigenschaften der Lösungen	148		
		6.3.2	Der Tunneleffekt	151		
	6.4	Der ha	rmonische Oszillator	153		
		6.4.1	Lösung durch ,geschicktes Raten'	153		
		6.4.2	Lösung durch Auf- und Absteigeoperatoren	154		
		6.4.3	Der Grenzwert großer Energien	157		
		6.4.4	Semiklassische Bestimmung der			
			Grundzustandsenergie	158		
		6.4.5	Der harmonische Oszillator in			
			höheren Dimensionen	159		
		6.4.6	Die Wärmekapazität eines harmonischen			
			Oszillators	160		
7	Das Coulomb-Potenzial					
	7.1	Radial	potenziale und Kugelflächenfunktionen	168		
	7.2		hhndrehimpuls	170		
	7.3		asserstoffatom	172		
		7.3.1	Die Lösung der Schrödinger-Gleichung	172		
		7.3.2	Die Wellenfunktionen des Wasserstoffatoms	175		
		7.3.3	Ein semiklassisches Argument für die			
			Energieniveaus	176		
	7.4	Der Sp	oin	177		
	7.5	-	neine Anmerkungen zur Quantisierung der Energie	180		
8	Meh	rteilchei	nsysteme und Verschränkungen	185		
	8.1		matische Beschreibung von Mehrteilchensystemen	186		
		8.1.1	Das Tensorprodukt von Vektorräumen	186		
		8.1.2	Separable Zustände und verschränkte Zustände	188		
		8.1.3	Die Teilreduktion von Zuständen	189		
	8.2	Identis	che Teilchen und Statistik	191		
		8.2.1	Bosonen, Fermionen und das			
			Spin-Statistik-Theorem	192		
		8.2.2	Symmetrisierung und Antisymmetrisierung			
			von Mehrteilchenzuständen	193		
	8.3	EPR und Quantenkorrelationen				
	8.4		che Ungleichungen	200		
		8.4.1	Bell'sche Ungleichungen – die Version von			
			Wigner und d'Espagnat	200		
		8.4.2	Bell'sche Ungleichungen – CHSH-Version	204		

X Inhaltsverzeichnis

9	Zwei	zustand-	Systeme	211
	9.1	Pauli-M	Matrizen	212
	9.2	Der Zu	standsraum – Die Bloch-Kugel	213
	9.3	Physika	alische Anwendungen	214
		9.3.1	Spin-1/2-Systeme	214
		9.3.2	Polarisationszustände von Photonen	216
		9.3.3	Zweiniveau-Systeme	217
	9.4	Quante	ninformation	220
		9.4.1	Klassische Information	220
		9.4.2	Qubits und Bell-Zustände	221
		9.4.3	Das No-Cloning-Theorem.	223
		9.4.4	Quantenteleportation	224
		9.4.5	Quantenkryptographie	226
Tell	III	A	hlte and vertisfeeds Venital ann	
Ten		Ausgewa Quanten	hlte und vertiefende Kapitel zur	
10		_	n zu unendlichdimensionalen Vektorräumen	235
	10.1		eine Definitionen	235
		10.1.1	Separable Hilbert-Räume	235
		10.1.2	Lineare Abbildungen in Hilbert-Räumen	237
	10.2		$\operatorname{um} \mathcal{L}_2$	239
		10.2.1	Der \mathcal{L}_2 als Raum von Äquivalenzklassen	239
		10.2.2	Distributionen – verallgemeinerte Funktionen	240
		10.2.3	Rechenregeln für Distributionen	242
		10.2.4	Unbeschränkte Operatoren im \mathcal{L}_2	243
		10.2.5	Lokale Operatoren in der Ortsraumdarstellung	244
		10.2.6	Kontinuierliches Spektrum	245
		10.2.7	Das Gel'fand-Tripel	246
		10.2.8	Spurklasseoperatoren	247
	10.3	Die Fo	urier-Transformation	248
11			ingsoperator und Funktionalintegral	251
	11.1		itentwicklungsoperator	251
		11.1.1	Allgemeine Darstellung	251
		11.1.2	Der Zeitentwicklungsoperator in der	
			Ortsdarstellung	252
		11.1.3	Der freie Zeitentwicklungsoperator	253
	11.2		wicklung und Funktionalintegral	254
	11.3		ation über Wege bei Spaltexperimenten	257
		11.3.1	Doppel- und Mehrfachspalt	257
		11.3.2	Das ,Zeigermodell' der Teilchenpropagation	259
12	Das I		erg-Bild der Quantenmechanik	261
	12.1		isenberg'schen Bewegungsgleichungen	261
	12.2	Allgem	eine Struktur der Heisenberg-Gleichung	263

Inhaltsverzeichnis XI

	12.3	Lineare Bewegungsgleichungen	264
		12.3.1 Der Fall eines freien Teilchens	264
		12.3.2 Harmonischer Oszillator	265
13	Dars	tellungen der Drehgruppe und die Addition von	
	Dreh	impulsen	267
	13.1	Symmetrien, Gruppen und ihre Darstellungen	268
	13.2	Die Drehgruppe SO(3)	270
	13.3	Die Lie-Algebra zu SO(3)	270
	13.4	Darstellungen der Lie-Algebra zu SO(3) für $d = 1$ und $d = 2$	272
	13.5	Die Gruppe SU(2)	272
	13.6	Allgemeine Dimensionen	273
	13.7	Drehimpuls und Spin in der Quantenmechanik	276
	13.8	Addition von Drehimpulsen	278
		13.8.1 Allgemeine Zerlegung des Tensorprodukts zweier	250
		Darstellungen	278
		13.8.2 Zerlegung für die Darstellungen der Gruppe SU(2)	279
		13.8.3 Beispiel: Der Gesamtdrehimpuls zu zwei	200
		Spin-½-Systemen	280
14	Die li	ineare Kette und der Weg zur Quantenfeldtheorie	283
	14.1	Die klassische Lagrange-Funktion und die	
		Bewegungsgleichung	284
	14.2	Lösung des klassischen Systems	285
	14.3	Die Quantisierung der linearen Kette	288
	14.4	Auf- und Absteigeoperatoren in der Quantenfeldtheorie	292
15	Optis	sche Experimente zur Quantentheorie	295
	15.1	Experimentelle Bausteine	295
		15.1.1 Laser	295
		15.1.2 Doppelspalt und Gitter	296
		15.1.3 Strahlteiler.	296
		15.1.4 $\lambda/4$ - und $\lambda/2$ -Plättchen	297
		15.1.5 Down-Conversion-Kristalle	298
	15.2	Das Mach-Zehnder-Interferometer	298
	15.3	Wechselwirkungsfreie Messung – das "Knallerexperiment"	300
	15.4	Das Experiment von Hong, Ou und Mandel	302
	15.5	Experimente mit verzögerter Wahl	303
	15.6	Der Quantenradierer	305
16	Von V	Wellenfunktionen zum Zweizustand-System	309
	16.1	N-Zustand-Systeme	309
			310
		16.1.2 Endlichdimensionale Darstellungen	311
		16.1.3 Diskrete Fourier-Transformation	312

XII Inhaltsverzeichnis

	16.2	Analog	a: Polarisation und Wellenfunktionen	313		
		16.2.1	Einmal mehr: Die Postulate der Quantentheorie	313		
		16.2.2	Weitere Konzepte und Parallelen	317		
17	Probl	leme der	Quantentheorie und offene Fragen	321		
	17.1		essproblem	322		
		17.1.1	Allgemeine Charakterisierung des Messproblems	322		
		17.1.2	Mathematische Formulierung des Messproblems	324		
	17.2	Dekoha	irenz	326		
	17.3	Schröd	ingers Katze	328		
	17.4		igerbasis-Problem	329		
	17.5		nkorrelationen und Kontextualität	330		
18	Interpretationen der Quantentheorie					
	18.1	_	penhagener Deutung	335 335		
		18.1.1	Komplementarität	336		
		18.1.2	Der Bezug auf eine klassische Welt	336		
		18.1.3	Die Born'sche Regel als Ausdruck einer			
		101110	ontologischen Wahrscheinlichkeit.	336		
		18.1.4	Die Heisenberg'schen Unschärferelationen	337		
		18.1.5	Das Korrespondenzprinzip	338		
	18.2		e Interpretationen	338		
	10.2	18.2.1	Ensemble-Interpretation	339		
		18.2.2	Der Quantenzustand als ,Katalog von			
		10.2.2	Erwartungen'	340		
		18.2.3	QBism – Quantum-Bayesianismus	341		
		18.2.4	Die Viele-Welten-Interpretation	342		
	18.3		smodelle	344		
	10.0	18.3.1	Wigner und der Einfluss des Bewusstseins	344		
		18.3.2	Die Gravitation als Auslöser der Reduktion	345		
		18.3.3	GRW – stochastische Kollapszentren	346		
10	ъ.		•	347		
19						
	19.1		gemeine Idee	347		
	19.2		nantenpotenzial	350		
	19.3		che Theorie oder Quantentheorie	353		
	19.4		e der Bohm'schen Mechanik	354		
	19.5	_	unkte an der Bohm'schen Mechanik	354		
		19.5.1	Mehrteilchensysteme	355		
		19.5.2	Die Statistik der Teilchen	356		
		19.5.3	Der Spin	356		
		19.5.4	Die Nichtlokalität	356		
		19.5.5	Die Asymmetrie zwischen Ort und Impuls	357		
		19.5.6	Die Bahnkurven der Teilchen	357		
		19.5.7	Die nichtrelativistische Schrödinger-Gleichung	358		
		19.5.8	Quantenfeldtheorie	358		

Inhaltsverzeichnis XIII

20	Prop	ositioner	n und Quantenlogik	361
	20.1		rung	361
	20.2		itionen in der klassischen Mechanik	362
	20.3	-	itionen in der Quantenmechanik	364
	20.4	Komme	ensurable und inkommensurable Eigenschaften	366
	20.5	Verban	dstheorie	368
		20.5.1	Ordnungsrelationen	368
		20.5.2	Verbände	369
		20.5.3	Die Verbandsstruktur im physikalischen	
			Propositionenkalkül	371
		20.5.4	Weitere Verbandseigenschaften	371
21	Zitat	e zur Qu	nantentheorie	373
Lite	eratur			379
Stic	hwort	verzeich	nis	383

Allgemeine Einführung

Seit ihrer Entstehung zu Beginn des 20. Jahrhunderts steht die Quantentheorie in dem Ruf, teilweise unverständlich, absurd und in gewisser Hinsicht sogar unlogisch zu sein. Sie scheint unseren durch die klassische Physik geprägten Grundvorstellungen über die Natur zu widersprechen, wodurch ihr manchmal ein esoterischer Charakter zugeschrieben wird. Unbezweifelbar ist jedoch, dass diese Theorie zu sehr präzisen und teilweise verblüffenden Vorhersagen geführt hat und immer noch führt, und soweit diese Vorhersagen experimentell überprüfbar sind, wurden sie uneingeschränkt bestätigt. Auch wenn wir mit dem mathematischen Formalismus der Quantenmechanik weitgehend sicher umgehen können, bleibt das Gefühl, diesen mathematischen Formalismus nicht wirklich mit einem physikalischen Verständnis untermauern zu können. Häufig fällt es sogar schwer, die Fragen präzise zu formulieren, was genau an der Quantenmechanik so seltsam oder unverständlich erscheint.

Oft gibt man sich mit der Erklärung zufrieden, eine solche Anschauung sei nicht möglich, da sie notwendigerweise immer auf den aus dem Alltag vertrauten Konzepten der klassischen Physik beruhen wird. Diese Konzepte müssen aber nicht zwingend auch für die mikroskopische Welt anwendbar sein. Darüber hinaus kann eine solche Anschauung, von welcher Art sie auch sei, im Rahmen des mathematischen Formalismus nicht abgeleitet oder gar ihre Richtigkeit bewiesen werden. Es setzt sich dann ein rein positivistischer Standpunkt durch, d. h., die Aufgabe der Physik wird einzig in der Bereitstellung eines Formalismus gesehen, mit dem sich Vorhersagen zu physikalischen Experimenten möglichst weitgehend aufstellen lassen. Der Versuch eines "Begreifens" im Sinne irgendeiner anschaulichen Vorstellung wird als metaphysisch oder philosophisch und nicht mehr zum Bereich der Naturwissenschaft gehörend abgelehnt.

Wirklich überzeugend erscheint diese Erklärung nicht, denn beispielsweise in der Mathematik können wir problemlos über höher dimensionale Vektorräume, Topologien oder algebraischen Strukturen vieldimensionaler Mannigfaltigkeiten sprechen und damit sogar eine gewisse Anschauung verbinden, obwohl diese weit von den Erfahrungen des Alltags entfernt sind. Das Seltsame an der Quantenmechanik ist weniger, dass sie mit ungewohnten mathematischen Strukturen formuliert wird, sondern dass gewisse Grundvorstellungen über die Natur und unser Verständnis von Realität nicht mehr zu gelten scheinen. Dazu gehören beispielsweise der intrinsische Indeterminismus der Quantenmechanik, die scheinbare

Nichtlokalität sogenannter Quantenkorrelationen, oder auch die unvermeidbare Einbeziehung des Messprozesses (bis hin zur Einbeziehung eines Beobachters) in ihre Beschreibung.

Gerade wegen dieser letztgenannten Kritikpunkte besteht noch nicht einmal unter den Physikern Einigkeit darüber, inwieweit es sich bei der Quantentheorie überhaupt um eine 'Theorie' handelt bzw. was diese Theorie eigentlich umfasst. Das Spektrum möglicher Antworten ist riesig: Es reicht von der Meinung, die Quantentheorie sei *die* fundamentale Theorie unserer Natur, bis hin zu der Ansicht, dass es sich bei der Quantentheorie bestenfalls um eine Sammlung empirisch begründeter, aber im Wesentlichen unverstandener und insbesondere nicht wirklich widerspruchsfreier Vorschriften handele. Die Gründe für diese Meinungsvielfalt werden wir kennenlernen.

Natürlich fehlt es nicht an Erklärungs- oder Interpretationsansätzen. Die unterschiedlichen Interpretationen basieren meist auf dem anerkannten mathematischen Formalismus der Quantenmechanik und führen daher im Allgemeinen zu denselben experimentellen Vorhersagen. Eine Widerlegung der einen oder anderen Interpretation mit wissenschaftlichen Methoden ist nicht möglich – sie sind empirisch gleichwertig. Auch diese Immunisierung der Interpretationsansätze gegen eine Widerlegbarkeit durch das Experiment hat zu der verbreiteten Ansicht beigetragen, alle Versuche in dieser Richtung seien unwissenschaftlich und aus der wissenschaftlichen Debatte auszuschließen.

Doch gerade wenn man Quantenmechanik lehrt, ist es unvermeidbar, dass von Seiten der Lernenden (seien es Schüler und Schülerinnen oder Studierende) Fragen im Sinne des "Wie kann ich mir das vorstellen?" gestellt werden. Auch von einem wissenschaftlichen Standpunkt aus ist es dann unbefriedigend, solche Fragen mit einem "Am besten gar nicht!" beiseitezuschieben. Selbst diese Antwort erfordert eine Erläuterung.

Die oberste Entscheidungsinstanz der Naturwissenschaft ist immer das Experiment bzw. die Naturbeobachtung. Ein solches Experiment stellt gleichsam eine Frage an die Natur, hinter der letztendlich immer auch die Grundfrage steht, ob die Theorie oder das Modell, mit dem wir die Natur beschreiben, richtig ist. Eine solche Frage muss aber in einen experimentellen Aufbau und ein experimentelles Protokoll übersetzt werden, und die Antwort – das experimentelle Ergebnis – erfordert eine Interpretation. Ohne eine Theorie oder ein Modell sind diese Übertragungen (in beide Richtungen) unmöglich. Einstein hat in einem Gespräch gegenüber Werner Heisenberg einmal behauptet: "Erst die Theorie entscheidet darüber, was man beobachten kann." [41] Und Max von Laue erwähnt in seinem Buch zur Geschichte der Physik [56] die Messung der Lichtgeschwindigkeit in bewegten Flüssigkeiten durch Fizeau, dessen Ergebnisse zunächst als Beweis für einen Äther, später aber im Rahmen der Relativitätstheorie als Beweis für die Richtigkeit der Einstein'schen Ideen gewertet wurde. Er schreibt dazu:

So ist die Geschichte des Fizeau-Versuchs ein lehrreiches Beispiel dafür, wie weit in die Deutung jedes Versuchs schon theoretische Elemente hineinspielen; man kann sie gar nicht ausschalten. Und wenn dann die Theorien wechseln,

so wird aus einem schlagenden Beweis für die eine leicht ein ebenso starkes Argument für eine ganz entgegengesetzte.

Dieser wissenschaftstheoretische Aspekt spielt in der Quantenmechanik eine noch wesentlichere Rolle als in der klassischen Physik, gerade weil dem Einfluss des Messprozesses und der Messapparatur im allgemeinsten Sinne in der Quantenmechanik eine weitaus größere Bedeutung zukommt als in der klassischen Physik.

Von Werner Heisenberg und Paul Dirac, der bekannt war sowohl für seine Wortkargheit als auch seine scharfe Logik, erzählt man sich die folgende Geschichte (siehe z. B. [9]): Die beiden gingen auf dem Land spazieren und Heisenberg bemerkte auf einem nahegelegenen Feld einige frisch geschorene Schafe. Da es kalt war, meinte er zu Dirac: "Schau, Dirac, diese armen Schafe wurden geschoren." Dirac schaute hin, überlegte eine Weile und meinte dann: "Ja, zumindest auf der uns zugewandten Seite."

Unabhängig davon, ob diese Anekdote stimmt oder nicht, zeigt sie in deutlicher Weise, wie man mit der Quantenmechanik umgehen sollte. Man kann gar nicht vorsichtig genug sein und sollte zunächst einmal nur das akzeptieren, was wirklich beobachtet wird, sowie jede Schlussfolgerung auf 'die uns abgewandte Seite' vermeiden. Das wird sich in aller Strenge praktisch nie umsetzen lassen, aber zumindest sollte man versuchen, sich gelegentlich bewusst zu machen, dass hinter den meisten Schlussfolgerungen nicht direkt beobachtete bzw. beobachtbare Annahmen stehen.

Dieses Lehrbuch besteht aus drei Teilen. Teil I enthält drei Kapitel mit möglichen Zugängen zur Quantentheorie. Diese bieten dem Leser oder der Leserin nicht nur gleich zu Beginn verschiedene Perspektiven, aus denen man die Quantentheorie betrachten und sich ihr nähern kann, sondern können mit den notwendigen didaktischen Änderungen und Elementarisierungen auch in der Schule verwendet werden.

Teil II umfasst den eigentlichen Lehrstoff zur Quantentheorie, den man als Lehrender verstanden haben sollte und der die wesentlichen Grundlagen enthält. Dazu zählen sowohl ein Einstieg in die mathematischen Methoden als auch die Formulierung des im Vorwort angesprochenen "Kochrezepts" sowie erste Anwendungen dieser Regeln. Dieser Teil enthält jeweils am Ende der jeweiligen Kapitel Übungsaufgaben, mit deren Hilfe der Leser sein Verständnis überprüfen und vertiefen kann. Die Lösungen zu diesen Übungen findet man auf der Webseite www.springer.com/9783662597354.

Teil III schließlich ist eine Sammlung von weiterführenden Kapiteln. Diese Kapitel sind untereinander nahezu unabhängig und setzen lediglich die Inhalte aus Teil I und Teil II voraus; sie können also einzeln und in beliebiger Reihenfolge gelesen werden. Sie bilden ein Zusatzmaterial, das hoffentlich zu einem vertieften Verständnis beitragen kann.