Inhaltsverzeichnis

1 Die Newton’schen Axiome ... 1
 1.1 Definitionen und Grundlagen .. 2
 1.2 Die Newton’schen Axiome ... 6
 1.3 Eindimensionale Bewegung im homogenen Schwerefeld 12
 1.4 Energiesatz in einer Dimension .. 18
 1.5 Bewegung in drei Dimensionen .. 23
 1.6 Energieerhaltung und konservative Kräfte 28
 Aufgaben ... 36
 Ausführliche Lösungen zu den Aufgaben 39
 Literatur ... 45

2 Koordinatentransformationen und beschleunigte Bezugssysteme ... 47
 2.1 Drehungen von kartesischen Koordinatensystemen 48
 2.2 Galilei-Transformationen .. 55
 2.3 Beschleunigte Bezugssysteme .. 59
 2.4 Kräfte in rotierenden Bezugssystemen 65
 2.5 Nichtkartesische Koordinatensysteme 71
 Aufgaben ... 77
 Ausführliche Lösungen zu den Aufgaben 79
 Literatur ... 83

3 Systeme von Punktmassen ... 85
 3.1 Allgemeine Aussagen und Erhaltungssätze 86
 3.2 Das Zweikörper-Zentralkraftproblem 91
 3.3 Das Kepler-Problem .. 95
 3.4 Elastische Stöße und Streuung .. 101
 3.5 Das reduzierte Dreikörperproblem 109
 3.6 Gezeitenkräfte .. 112
 3.7 Mechanische Ähnlichkeit und der Virialsatz 116
 Aufgaben ... 119
 Ausführliche Lösungen zu den Aufgaben 121
 Literatur ... 125
<table>
<thead>
<tr>
<th>4</th>
<th>Starre Körper</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Freiheitsgrade des starren Körpers</td>
<td>128</td>
</tr>
<tr>
<td>4.2</td>
<td>Kinetische Energie und Drehimpuls</td>
<td>131</td>
</tr>
<tr>
<td>4.3</td>
<td>Tensoren</td>
<td>133</td>
</tr>
<tr>
<td>4.4</td>
<td>Trägheitstensor und Trägheitsmomente</td>
<td>137</td>
</tr>
<tr>
<td>4.5</td>
<td>Kontinuierliche Massenverteilungen</td>
<td>143</td>
</tr>
<tr>
<td>4.6</td>
<td>Bewegungsgleichungen des starren Körpers</td>
<td>147</td>
</tr>
<tr>
<td>4.7</td>
<td>Rotation des Kreisels</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Aufgaben</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>Ausführliche Lösungen zu den Aufgaben</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Literatur</td>
<td>164</td>
</tr>
<tr>
<td>5</td>
<td>Lagrange-Formalismus und Variationsrechnung</td>
<td>165</td>
</tr>
<tr>
<td>5.1</td>
<td>Systeme mit Zwangsbedingungen</td>
<td>166</td>
</tr>
<tr>
<td>5.2</td>
<td>Lagrange-Gleichungen erster Art</td>
<td>171</td>
</tr>
<tr>
<td>5.3</td>
<td>Lagrange-Gleichungen zweiter Art</td>
<td>176</td>
</tr>
<tr>
<td>5.4</td>
<td>Beispiele zur Anwendung des Lagrange-Formalismus</td>
<td>181</td>
</tr>
<tr>
<td>5.5</td>
<td>Variationsrechnung</td>
<td>185</td>
</tr>
<tr>
<td>5.6</td>
<td>Symmetrien und Erhaltungssätze</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Aufgaben</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Ausführliche Lösungen zu den Aufgaben</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Literatur</td>
<td>208</td>
</tr>
<tr>
<td>6</td>
<td>Schwingungen</td>
<td>209</td>
</tr>
<tr>
<td>6.1</td>
<td>Freie Schwingungen</td>
<td>210</td>
</tr>
<tr>
<td>6.2</td>
<td>Gedämpfte Schwingungen</td>
<td>217</td>
</tr>
<tr>
<td>6.3</td>
<td>Erzwungene Schwingungen und Resonanz</td>
<td>220</td>
</tr>
<tr>
<td>6.4</td>
<td>Kleine Schwingungen gekoppelter Systeme</td>
<td>223</td>
</tr>
<tr>
<td>6.5</td>
<td>Anwendungen gekoppelter Oszillatoren</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Aufgaben</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Ausführliche Lösungen zu den Aufgaben</td>
<td>237</td>
</tr>
<tr>
<td>7</td>
<td>Hamilton-Formalismus</td>
<td>243</td>
</tr>
<tr>
<td>7.1</td>
<td>Hamilton-Funktion und kanonische Gleichungen</td>
<td>244</td>
</tr>
<tr>
<td>7.2</td>
<td>Kanonische Transformationen</td>
<td>249</td>
</tr>
<tr>
<td>7.3</td>
<td>Grundlagen der Hamilton-Jacobi-Theorie</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>So geht's weiter</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Aufgaben</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Ausführliche Lösungen zu den Aufgaben</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>Literatur</td>
<td>269</td>
</tr>
</tbody>
</table>
8 **Kontinuumsmechanik** ... 271
8.1 Lineare Kette und Übergang zum Kontinuum 272
8.2 Schwingende Saite ... 277
8.3 Fourier-Reihen .. 281
8.4 Lagrange-Formalismus für Felder .. 287
8.5 Grundlagen der Elastizitätstheorie 290
8.6 Ideale Fluidodynamik ... 297
8.7 Viskosität und Navier-Stokes-Gleichung 304
So geht’s weiter ... 308
Aufgaben ... 312
Ausführliche Lösungen zu den Aufgaben 314
Literatur ... 318
9 **Spezielle Relativitätstheorie** .. 319
9.1 Anfang und Ende der Äther-Vorstellung 321
9.2 Lorentz-Transformationen ... 325
9.3 Minkowski-Raum ... 330
9.4 Viererformalismus ... 337
So geht’s weiter ... 344
Aufgaben ... 347
Lösungen zu den Aufgaben ... 349
Ausführliche Lösungen zu den Aufgaben 350
Literatur ... 354
10 **Relativistische Mechanik** .. 355
10.1 Punktteilchen, Ruhemasse und Viererimpuls 356
10.2 Relativistische Bewegungsgleichungen 357
10.3 Relativistische Teilchenstöße ... 360
Aufgaben ... 370
Lösungen zu den Aufgaben ... 373
Ausführliche Lösungen zu den Aufgaben 374
Literatur ... 378
Abbildungsverzeichnis ... 379
Sachverzeichnis ... 381