Einleitung

Kapitel 1 Was ist Physik? – 3
Kapitel 2 Physikalische Größen – 9
Kapitel 3 Messfehler – 25
Kapitel 4 Methodik – 35
Was ist Physik?

Stefan Roth und Achim Stahl

Die neuzeitliche Physik ist eine experimentelle Wissenschaft. Ob ein bestimmtes Modell richtig oder falsch ist, entscheiden die Physiker mithilfe von Experimenten. Dies war nicht immer so. Im Mittelalter studierten die Physiker antike Schriften, um darin Erkenntnis zu finden. Doch seit Galileo Galilei (1564–1642) ist das Experiment die Basis der Physik.

Hier ein ausführlicherer Artikel von Rudolf Mößbauer (Abb. 1.1), Nobelpreisträger in Physik 1961, zur Bedeutung der Physik:

Die Bedeutung der Physik

1 © Mit freundlicher Genehmigung C. Mößbauer.

nannten Nanotechnologie zu zahlreichen technischen Neuanwendungen führen.

Die Durchmusterung des Kosmos, z. B. mit Röntgenteleskopen, wird unsere Kenntnisse über den Ursprung, die Struktur, die Dynamik des Kosmos ebenso erweitern wie die Analyse der unsichtbaren Neutrino-Ströme mittels aufwendiger unterirdischer Detektoren. Experimente und theoretische Entwicklungen werden zu einem neuen Verständnis der

München 2002
Rudolf Mößbauer
Physikalische Größen

Stefan Roth und Achim Stahl

2.1 Definition – 10
2.2 Die Grundgrößen – 10
2.3 Die Länge – 13
2.4 Die Zeit – 16
2.5 Die Masse – 18
2.6 Die Winkelmaße – 21
2.7 Schreibweisen – 21
2.1 Definition

Um den Wert einer Messgröße nachvollziehbar anzugeben, gibt man einen Zahlenwert und eine Einheit an. Beschreibt man also eine Länge als 1,5 Kilometer, dann ist 1,5 der Zahlenwert und „Kilometer“ die Einheit. Man verwendet die Einheit „Kilometer“ als Maßstab und gibt mit dem Zahlenwert 1,5 an, dass die Länge eineinhalbmal so lang ist wie ein Kilometer.

2.2 Die Grundgrößen

Seit 1960 wird diese Vereinbarung als SI (SI = Système International d’Unités = Internationales Einheitensystem) bezeichnet. Die Basiseinheiten des SI sind in Deutschland für den amtlichen und

<table>
<thead>
<tr>
<th>Tabelle 2.1 Basisgrößen nach dem SI-System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basisgröße</td>
</tr>
<tr>
<td>Länge</td>
</tr>
<tr>
<td>Masse</td>
</tr>
<tr>
<td>Zeit</td>
</tr>
<tr>
<td>Elektrische Stromstärke</td>
</tr>
<tr>
<td>Temperatur</td>
</tr>
<tr>
<td>Stoffmenge</td>
</tr>
<tr>
<td>Lichtstärke</td>
</tr>
</tbody>
</table>
geschäftlichen Verkehr verbindlich vorgeschrieben (im Gesetz über Einheiten im Messwesen) und werden auch in fast allen Bereichen weitgehend benutzt. Einzelne Abweichungen haben sich noch erhalten, wie z. B. die Angabe der Motorleistung von Fahrzeugen in PS. Im SI-System wird sie in Watt bzw. kW angegeben.

Die sieben Basiseinheiten sind seit 1978 folgendermaßen festgelegt:

Meter – Das Meter ist die Längeneinheit im SI-System. Es hat eine Reihe unterschiedlicher Definitionen durchlaufen und ist heute indirekt über die Lichtgeschwindigkeit auf die Zeiteinheit zurückgeführt. Ein Meter ist die Länge der Strecke, die Licht im Vakuum im 299.792.458-ten Bruchteil einer Sekunde durchläuft. Der Bruchteil wurde so gewählt, dass diese Definition in etwa den vorherigen entspricht.

Kelvin – Mit dem Kelvin werden Temperaturen gemessen. Die moderne Definition wird vom Tripelpunkt des Wassers abgeleitet. Das Kelvin ist der 273.16-te Teil der Temperatur des Tripelpunktes in Bezug auf den absoluten Temperaturnullpunkt.

Mol – Mit der Einheit Mol wird die Stoffmenge eines Systems gemessen. Es entspricht der Stoffmenge, die sich aus ebenso vielen Atomen, Molekülen oder Ionen zusammensetzt, wie Atome in 12 g des Kohlenstoffnuklids ^{12}C enthalten sind.

Candela – Mit der Einheit Candela wird schließlich die Stärke einer Lichtquelle angegeben. Man geht von einer Lichtquelle monochromatischer Strahlung der Frequenz $540 \cdot 10^{12}$ Hz aus. Beiträgt die Intensität der Strahlung in einer bestimmten Richtung genau $1/683$ W pro Steradian, so entspricht dies einer Lichtstärke von einem Candela.

Radiant – Der Radiant gibt den Winkel in einer Ebene an. Verbindet man die Schenkel des Winkels mit einem Bogen, so ist der Radiant das Verhältnis von Bogenlänge zur Länge der Schenkel.
2 Tabelle 2.2 Ergänzende SI-Einheiten

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>Einheitenzeichen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebener Winkel</td>
<td>Radiant</td>
<td>rad</td>
</tr>
<tr>
<td>Räumlicher Winkel</td>
<td>Steradian</td>
<td>sr</td>
</tr>
</tbody>
</table>

Steradian – Der Steradian ist der entsprechende räumliche Winkel. In Abb. Abschn. 2.6 ist die Definition genauer beschrieben.

\[F = ma \] (2.1)

auf die Grundgrößen Länge, Masse und Zeit zurückgeführt. Aus Gl. 2.1 sieht man, dass für das Newton gelten muss

\[1 \text{ N} = [F] = [m][a] = 1 \text{ kg} \frac{\text{m}}{\text{s}^2} \] (2.2)

Die eckigen Klammern um eine Größe bezeichnen die Einheit der eingeschlossenen Größe.

Bitte beachten Sie, dass diese Auswahl der Grundgrößen ebenso wie die Wahl der Standards eine Konvention darstellt. Man hätte beispielsweise statt der Zeit auch die Geschwindigkeit als Grundgröße wählen können. Dann würde die Zeit entsprechend als abgeleitete Größe erscheinen.
