A-Z Navigation
Begriff Erklärung

Jacobi-Determinante, Volumenelemente unter Koordinatentransformationen

Beim Übergang von kartesischen Koordinaten $x_i$ zu allgemeinen Koordinaten $q_j$ erfüllt das Volumenelement $\mathrm{d} V = \mathrm{d} x_1\, \mathrm{d} x_2\, \mathrm{d} x_3 = (\det \boldsymbol{J})\, \mathrm{d} q_1\, \mathrm{d} q_2\, \mathrm{d} q_3, $ wobei $ \boldsymbol{J}$ die zugehörige Jacobi-Matrix ist. Die Größe $\det \boldsymbol{J}$ nennt man die Jacobi-Determinante oder Funktionaldeterminante, mit der häufigen Schreibweise \begin{equation} \det \boldsymbol{J} = \det \left(\frac{\partial x_i}{\partial q_j}\right). \end{equation}

Jacobi-Determinanten, Zylinder- und Kugelkoordinaten

Die Jacobi-Determinanten für Zylinder- und Kugelkoordinaten braucht man selbstverständlich nur einmal auszurechnen. Die Ergebnisse $\det \boldsymbol{J} = \varrho $ für Zylinderkoordinaten und $ \det \boldsymbol{J} = r^2 \sin \vartheta $ für Kugelkoordinaten kann man dann für alle entsprechenden Rechnungen direkt verwenden.

Jacobi-Matrix

Die durch $ J_{ij} := \partial_{q_j} x_i $ definierte Matrix einer Koordinatentransformation $q_i(x_j)$ mit Umkehrung $x_i(q_j)$ heißt Jacobi-Matrix der Koordinatentransformation. Häufig schreibt man auch \begin{equation} \boldsymbol{J} = \frac{\partial(x_1, x_2, x_3)}{\partial (q_1, q_2, q_3)}. \end{equation}

Joule-Thomson-Prozess

Bei einem sogenannten Joule-Thomson-Prozess bleibt die Enthalpie des Gases erhalten. Demnach muss gelten: $$ \mathrm{d} H=T\mathrm{d} S+V\mathrm{d} P=0\,. \label{eq:td03-157} $$